
ROBUST PATH PLANNING WITH IMPERFECT MAPS

Dave Ferguson∗ and Anthony Stentz
Robotics Institute, Carnegie Mellon University

Pittsburgh, PA, 15213

ABSTRACT

We describe an efficient method for path planning in
environments for which prior maps are plagued with un-
certainty. Our approach processes the map to determine
key areas whose uncertainty is crucial to the planning task.
It then incorporates the uncertainty associated with these
areas using the recently developed PAO* algorithm to pro-
duce a fast, robust solution to the original planning task.
We present results from a simulated outdoor navigation
scenario.

1 INTRODUCTION

Unmanned Ground Vehicles (UGV’s) have the poten-
tial to be integral components of the future Army. Their
ability to autonomously traverse rugged terrain makes them
ideal candidates for several key tasks, such as reconnais-
sance and supply runs. A vital aspect of this autonomy is
the generation of robust paths for the vehicle to navigate.

Much progress has been made in the field of path plan-
ning for outdoor navigation. As a result, we have very ef-
fective algorithms for providing paths from one point to an-
other while considering a range of factors, including: dis-
tance traveled, energy consumed, visibility, time taken, and
intelligence gained. Further, extensions to these algorithms
have been developed that allow for onboard replanning of
paths when information is received through sensors that
conflicts with the original information used for planning
(Stentz, 1995). These extensions are important since the
initial map information held by a ground vehicle is rarely
perfect.

In this paper, we address the problem of planning paths
through environments for which prior maps are plagued
with uncertainty. Our approach processes the map to deter-
mine key areas whose uncertainty is crucial to the planning
task. It then incorporates the uncertainty associated with
these areas using the recently developed PAO* algorithm
to produce a fast, robust solution to the original planning
task.

We begin by discussing the nature of the problem and

describe current approaches to planning with uncertainty.
We go on to introduce our novel solution and provide key
results and extensions.

2 PLANNING WITH UNCERTAINTY

Consider a UGV navigating outdoors with a low-
resolution overhead map generated by a helicopter or satel-
lite. This map may be quite inaccurate: the density of the
original data may be low and the position estimation used
to project this data onto the overhead map could contain
significant error. As a result, any planning map extracted
from this overhead map and used by the UGV will be im-
perfect. In particular, when a grid-based representation of
the environment is used, the terrain associated with each
grid cell may be only partially known.

Figure 1 shows an artificial sample uncertainty distri-
bution over the terrain associated with a particular cell in
such an environment. Although we may not have perfect
information regarding a cell’s terrain, we can often extract
such terrain distributions using the information we do have
and some error models. In other words, by paying close at-
tention to the uncertainty associated with our information,
we can derive distributions over the possible terrain values
of a given area of the environment.

Dealing with distributions over terrains rather than
fixed values requires some modification to classical plan-
ning techniques. Currently, there are two common methods
of planning that incorporate this type of uncertainty.

The first method, known asassumptive planning
(Nourbakhsh and Genesereth, 1996), computes an approx-
imate cost of traversing each cell (or ‘assumes’ a default
value) and plans using these approximations. When the re-
sulting plan is executed, if a discrepancy is found between
a cell’s assumed cost and actual cost, the plan can be up-
dated to reflect the newly acquired information. This type
of planning is very fast, since it can use A* techniques to
focus its initial computation and D* techniques to repair
previous plans (Nilsson, 1980; Stentz, 1995; Koenig and
Likhachev, 2002).

However, planning with approximate costs breaks

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
00 DEC 2004

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Robust Path Planning With Imperfect Maps

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Robotics Institute, Carnegie Mellon University Pittsburgh, PA, 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001736, Proceedings for the Army Science Conference (24th) Held on 29 November - 2
December 2005 in Orlando, Florida. , The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

p(Terrain)

Terrain: Flat Fair Rough Untraversable

Figure 1: A sample terrain distribution

down when cells have some probability of being un-
traversable. Typically, assumptive planners solve for a path
from the start states to a goal stateg while minimizing the
overall cost of the path. The minimum cost from a cellx to
the goalg is defined as:

Cost(x, g) = min
y∈nbrs(x)

[(Cost(x, y) + Cost(y, g)].

The valueCost(x, y) is computed from the approximate
cost of traversing from cellx to neighboring celly. But
if there is some non-zero probability that cellx is un-
traversable, the equation above is no longer valid, as it does
not account for this possibility (and its associated cost).In
order to get the appropriate cost, an alternative path needs
to be plannedaroundx to the goal. The cost of this path
is nontrivial to compute, as it requires making similar con-
siderations for all other cells encountered, which makes the
overall computation exponential in the number of cells in
the environment. As a result, accurate cost approximations
are difficult to generate and computed solution paths based
on rough estimates can be highly sub-optimal.

A second method addresses the limitations of approx-
imating costs and deals with terrain uncertainty more com-
prehensively. Partially observable planning (Kaelbling
et al., 1998) generates every possible terrain of every cell
and finds the overall best plan taking into account these
possibilities and their associated probabilities. Thus, rather
than using an approximation of the cost of using a particu-
lar cell on a path to the goal, it computes the true expected
cost by generating every possible outcome and its associ-
ated cost and probability. However, as mentioned above,
computing these costs is exponential in the number of cells
in the environment. Moreover, as an agent moves through
its environment it learns the true terrain values of areas it
encounters. Consequently, the terrain distribution associ-
ated with each cell can change and this change needs to
be taken into account in the planning stage. As a result,
partially observable planning is often intractable for rea-
sonably sized environments. Even if our terrain model is
reduced to two possibilities, traversable and untraversable,
and the agent is equipped with a perfect contact sensor (the
simplest case), planning involves dealing with3m·n infor-

1. Initially, set the cost of each cell in the environment
to its expected traversable cost. Use D* to plan an
optimal path (relative to these costs) from the robot
position to the goal. Mark the pinch points along this
path (see 2(b)) and use them to construct an ordered
list P .

2. While there are still pinch points inP :

(a) Replan path from pinch point to goal: Remove
the top pinch point fromP and set the terrain
of each cell belonging to a pinch point toun-
traversable. Invoke D* to replan a path to the
goal from the cell previous to the pinch point (on
the path on which the pinch point was found).

(b) Mark new pinch points along path: Step along
this new path and look for sections that have a
high probability of being untraversableand are
costly to navigate around. Mark these cells as
pinch points and add them to the end ofP .

3. Return all pinch points encountered.

Figure 2: Pinch Point Extraction Algorithm

mation states1 if the planning grid ism·n cells in size. This
is a prohibitively large state space.

However, it is possible to restrict our attention to areas
of the state space that are likely to be important to an agent
navigating the environment. In this way, we gain the sig-
nificant advantage of partially observable planning while
incurring only a fraction of its computational cost.

3 EXTRACTING PINCH POINTS

The idea is to focus our computation on areas of the
environment whose traversability, and hence uncertainty,
is crucial to the planning task. Thus, rather than dealing
comprehensively with the uncertainty associated with ev-
ery cell, as partially observable planning does, we restrict
our attention to those cells that are most useful.

These are the ones that would cause a costly detour
in the robot’s path to the goal if they turned out to be un-
traversable. We would like to be able to detect these cells
and incorporate their terrain uncertainty in our planner so
that we could decide from the outset whether it is better to
avoid these cells entirely or risk going through them.

1Each cell may be known to be traversable (t), known to be un-
traversable (o), or not yet seen by the agent (u), in which case it has its
initial probability distribution over being traversable/untraversable. This
results in 3 different states ofinformationthe agent may have concerning
the terrain of each cell.

2

ri−1

b1

ri

a1

ri+1

���

@@R

-

���

@@R
-

ri−1 b1

ri

a1

ri+1

���

@@R

-

���

@@R
-

ri−1

b1

ri

a1

b2

ri+1

���

@@R

-

���

-

��� 6

ri−1

a1

b1

ri

a2

b2

ri+1

���

���

-

6 ���

-

��� 6

Figure 3: Finding potential path blockages in an eight-connected grid.
Each diagram highlights three local paths from cellri−1 to ri+1 for dif-
ferent relative positions of cellsri−1, ri, andri+1. If there is a nontrivial
probability that all of these three paths are untraversable, the cells along
the paths are grouped together as a potential pinch point.

To find these cells, coined ‘pinch points’ (Ferguson
et al., 2004), we generate a set of cells that could reasonably
be encountered by an agent navigating to the goal and look
for key members of this set. Figure 2 outlines the process.

We first assume each cell with a reasonable probability
of being traversable is in fact traversable and generate its
resulting expected terrain cost2. We then calculate a path
to the goal that is optimal relative to these costs. Given this
path, labelled as consecutive cellsr1 . . . rn, we can find all
sections of the path that are potential blockagesandwould
cause significant detours if found to be blocked.

One approximation method for finding such blockages
is as follows. Label a section of the path centered on cellri

a potential blockage if there is a nontrivial probability that
an agent at cellri−1 will not be able to get to cellri+1 using
one of the three shortest non-intersecting routes between
the two cells. Here, the idea is that ifri turns out to be
untraversable, there is still a good chanceri+1 is reachable
from ri−1 using one or more of the neighbors ofri, but
if ri is untraversable and the next obvious two paths from
ri−1 to ri+1 are also untraversable, then it is not so likely.
To generate the probability that the path is blocked at cell
ri, we look at the three shortest paths from cellri−1 to
cell ri+1 and use the terrain distributions of the cells along
these paths to determine the probability that all three paths
are untraversable. If this probability is greater than some
threshold, we group cellri and the cells along the shortest

2This is computed by normalising its terrain distribution to only con-
tain the traversable range then taking an expectation.

paths together as a potential pinch point with positionri.

Figure 3 illustrates the shortest paths betweenri−1 and
ri+1 for four different relative positions of the consecutive
path cellsri−1, ri, andri+1. The paths for all other pos-
sible relative positionings can be obtained from these four.
In this figure,ri provides one path between the two cells,
while the other paths are denoted by the cells markeda1, a2

andb1, b2, respectively.

If a group of cells is marked as a potential pinch point,
we know that there is a nontrivial probability that an agent
may not be able to get through this area. In order to deter-
mine the consequences of this possible outcome, we then
check how costly a route around the potential pinch point
would be. To do this, we generate a cheapest cost path from
the previous cell on the path,ri−1, to the next cell on the
path,ri+1, without using any of the cells constituting the
potential pinch point. If the cost of this path is significant
we add the potential pinch point to our list of true pinch
points.

If we come across a number of pinch points in a row,
for instance in a narrow valley, we combine them into a
single pinch point. The probability of the combined pinch
point being blocked is taken to be1 − p, wherep is the
probability that all of the pinch points are traversable. The
position of the pinch point used later for planning is taken
as the mean of its constituents.

Once we have found all pinch points along the orig-
inal path, we then set the terrains of all cells comprising
these pinch points to untraversable and replan paths from
the close side of each of these pinch points to the goal, i.e.,
from ri−1 for each pinch pointri. This enables us to locate
new pinch points that might be encountered by the agent
if it found the current pinch point to be untraversable. We
iterate the procedure to generate a set of pinch points that
could reasonably be encountered by an agent moving to-
wards the goal (assuming the agent always acts optimally
given its map information). Figure 4 illustrates the ap-
proach in action.

In extracting pinch points, D* is used to replan each
subsequent path. The efficiency of D* over A* has
been widely recognized (see (Stentz, 1995; Koenig and
Likhachev, 2002)) and, as shown in the results section, this
efficiency allows us to generate our set of pinch points very
quickly. Once equipped with this set, we can then incorpo-
rate its members and their associated terrain uncertainties
into the planning process. To do this, we make use of the
recently developed PAO* algorithm (Ferguson et al., 2004).

3

Figure 4: (top-left) A helicopter-generated map of an outdoor area. Dark areas represent trees or grass, light areas represent roads or buildings. Registered
with this visual imagery is 3D terrain information. Black areas represent sections of the environment for which no information was gathered. (top-right) An
optimal path (in white) from the white circle on the left side to the white circle on the right side of this map, assuming areas with a reasonable probability
of being traversable are traversable. The two hollow black circles represent the pinch points found along this path. (lower-left) Alternative paths from the
start-side of each pinch point to the goal. These paths are computed assuming the two pinch points from (top-right) are untraversable (denoted as black
filled-in circles). A third pinch point is found along the alternative path from the second pinch point. (lower-right) The alternative path from the third pinch
point. Since this path does not contain any further pinch points, the three black filled-in circles represent all the pinch points used for planning. Data courtesy
of Omead Amidi and Ryan Miller.

4 PLANNING WITH PINCH POINTS

In (Ferguson et al., 2004) the algorithm PAO* was in-
troduced, which solves planning problems involving hid-
den state such as pinch points. PAO* is applied to an ad-
jacency graph containing the robot position, the goal posi-
tion, and the pinch points in the environment. It uses the ad-
jacency information to calculate an optimal solution graph,
as with the AO* algorithm, in a highly efficient manner.

4.1 The Adjacency Graph

Each pinch point may provide a bridge between sev-
eral different regions of the environment. For instance, a
pinch point located at a Y-junction connects three different
regions to each other. The collection of cells adjacent to
the pinch point in each region constitute afaceof the pinch
point. The adjacency graph links up these faces by insert-
ing arcs between every pair of faces that are reachable from
one another. The cost of an arc between two faces repre-
sents the lowest cost associated with moving along a pinch-
point free path between the faces and is used to propagate
values from one face to another.

4.2 Planning with the Adjacency Graph: PAO*

A shortest path is planned from the robot position to
the goal position using this adjacency graph. To do this,
the problem is phrased as a search over an AND-OR graph
(Rich and Knight, 1992). An AND-OR graph contains two
types of nodes: AND nodes obtain their values from com-
bining the values of all their child nodes, while OR nodes
compute their values from choosing a single child node
value.

Our planning domain can be represented as an AND-
OR graph as follows. Each node in the graph corresponds
to a face in a particularinformation state. In our setting,
an information state is the state of knowledge the agent
may have concerning the terrain values of each of the pinch
points. Following our discussion on partially observable
planning, we restrict each pinch point to be known to be
traversable (t), known to be untraversable (o), or not yet
seen by the agent (u).

The root of the AND-OR graph (an OR node) is the
start cells in the information state characterised by every
pinch point being as yet unseen (i.e., of valueu). The next

4

level of the graph corresponds to all elements of the adja-
cency graph, both faces and goal, which have arcs tos. The
faces are AND nodes: each has two children representing
the two possible information states realizable from visiting
the node. These two children each have the same face as
their parent but reside in different information states (one
has the pinch point associated with the face of valuet, the
othero). These children are OR nodes because their asso-
ciated pinch point has a known value.

PAO*, short for Propagating AO*, is an algorithm
which searches an AND-OR graph by gradually building
a solution graph from the start state through two alternat-
ing phases, as with AO* (Chang and Slagle, 1971; Rich
and Knight, 1992). First, it grows the best partial solution
by expanding one of the non-terminal leaf nodes and as-
signing admissible heuristic costs to its children. Next, it
uses the newly computed costs to propagate cost revisions
throughout the partial solution graph. At each stage in this
propagation, OR nodes which are part of the current partial
solution update their choice of child to reflect the most re-
cent cost values. An example partial solution graph for our
domain is shown in Figure 5.

In the first phase, an initial heuristic cost for a leaf
nodel is obtained by solving for the cost of the ‘heuris-
tic counterpart’ ofl: the fully-known state characterized by
the most desirable true values the pinch points inl could
have. Pinch points with known values are left untouched.
Pinch points not yet seen (with valueu) are assigned the
valuet. The resulting cost is guaranteed to be admissible.

The major benefit of PAO* lies in its second phase,
which involves the propagation of cost revisions. Unlike
AO*, PAO* propagates cost changes not only upwards to
parents in the partial solution graph, but sideways to neigh-
bors (in the complete AND-OR graph), and downwards to
children. The resulting approach makes full use of all re-
ceived information and thus allows for more informed deci-
sions to be made at each stage of the process. The complete
algorithm is given in Figure 6 and thoroughly discussed in
(Ferguson et al., 2004). Briefly, there are three key propa-
gation steps that PAO* performs but AO* does not.

Firstly, when the cost of a face in an information
state changes, PAO* propagates this updated costacross
all faces in the information state, so that dependent faces
will have their costs updated. While AO* only propagates
information up the partial solution graph, PAO* also prop-
agates it across the full AND-OR graph at each level.

Secondly, PAO* uses the nature of the current prob-
lem domain to propagate cost changesdownthe AND-OR
graph. Given an AND node with two children correspond-
ing to the two possible true values of the node’s pinch point
(traversable and untraversable), the cost of the parent node

f kf j

t

f i

P(i) = t P(i) = o

P(j) = o P(k) = t P(k) = oP(j) = t

o t o

t o

............

s

Figure 5: An example partial solution graph. Each circle corresponds to
an AND node and each square to an OR node.P(i) = o represents the
probability that the pinch point associated with facei is untraversable.

should never be greater than the cost of the untraversable
child node. Taking advantage of this piece of intuition,
PAO* updates the face costs of the states associated with
untraversable nodes so that they are lower bounded by their
parent state values. This also enables PAO* to provide
a more realistic value for the untraversable child of each
newly expanded AND node.

Similarly, the cost of a parent node should never be less
than the cost of its traversable child node. Thus, PAO* also
updates the face costs of parent information states so that
they are lower bounded by their traversable child states.

These propagation steps combine to allow information
gained at one end of the solution graph to be accessible at
the other. As a result of these differences, PAO* has been
shown to be orders of magnitude more efficient than AO*
while still guaranteeing optimal solutions (Ferguson et al.,
2004).

5 RESULTS

Focussing our computation on pinch points, we are
able to solve the planning problem much more efficiently
than the full partially observable approach yet still incor-
porate key areas of uncertainty to produce robust paths. In
addition, the complexity of our approach, through both the
extraction of pinch points and the subsequent PAO* search
for a solution, is highly dependent on both the quality of
the information the planning agent holds and the nature of
the environment. Thus, when confronted with simple en-
vironments and reliable information, it is able to exploit
these desirable attributes to produce solutions very quickly.

5

1. The initial solution graph consists solely of the start
nodes in the original information state.

2. While the solution graph has some nonterminal leaf
node:

(a) Generate fringe node: Starting from the root,
traverse down the solution graph until a nonter-
minal leaf node is encountered. Along the way,
update untraversable child states to have their
face costs lower bounded by their parent states.

(b) Expand best partial solution: Expand the nonter-
minal leaf node and compute cost values for the
information states of its children. Traversable
child states are given heuristic costs. Un-
traversable child states inherit their parents’ cost
values as lower bounds then perform limited
value iterations over their heuristic counterparts
to potentially increase these values. Add the
children to the solution graph, noting whether
they are terminal.

(c) Propagate cost changes and update solution:
Compute an updated cost of the original leaf
node given the costs of its children. If the node’s
cost has changed, update the cost estimates for
its entire information stateand update its par-
ent’s cost to reflect these changes. If the parent
is an OR node, the current node may be replaced
if it no longer provides the minimum cost. If the
node is a traversable child, update the costs as-
sociated with the entire parent state to be lower
bounded by the current state. Continue propa-
gating up the graph until a node is reached whose
cost does not change.

3. Return the optimal solution graph.

Figure 6: The PAO* algorithm

Meanwhile, in more complex environments with less reli-
able information, our approach incorporates more areas of
uncertainty to produce very robust solutions.

To test the computation required to extract pinch points
in environments of varying complexity, we generated 1000
grid environments, each of size200 × 200. The terrain dis-
tribution of each grid cell was fractally-generated to sim-
ulate similar structure to that found in outdoor regions.
These environments ranged from very open, easy to nav-
igate areas to very complex, cluttered areas3. With each
map, we extracted a maximum of 10 pinch points, so that

3For details of the fractal generation process, see (Stentz,1995). We
used a gain of 20 and varied the number of levels from 5 to 9.

our results could easily be interpreted in conjunction with
the planning results given in (Ferguson et al., 2004) (where
the pinch points were manually specified). As Figure 4
shows, this still enables us to consider a large number of
diverse paths when the environment is highly cluttered.

Over our 1000 terrain test cases, the average number
of extracted pinch points was 2.47 and the average CPU
time taken for this extraction was 0.07 seconds when run
on a P3 1.4 GHz processor. The maximum amount of time
required to extract the pinch points from any map was 0.34
seconds (with the minimum being 0.003).

Combining these results with the computation required
to plan with extracted pinch points (from (Ferguson et al.,
2004)), we have the entire process conservatively taking
6.7 seconds. This time reflects the worst results reported
here and in (Ferguson et al., 2004) for environments with
10 pinch points.

A complete partially observable solution over such an
environment would need to contend with3200·200 states
rather than the310 used in our PAO* planning. This is
currently far too large a problem to be solved optimally.
However, by restricting our attention to the most important
areas of the environment, we have been able to obtain ro-
bust, realistic paths for minimal computation. The resulting
approach is fast enough to be used by real systems operat-
ing with imperfect information in real environments.

6 REPLANNING

The approach described above allows us to deal with
the uncertainty in our planning grid which is likely to be
most relevant. But there are two settings in which this
approach alone will not be sufficient. The first is when
an agent finds itself in a highly unlikely situation where
a large number of non-pinch point cells turn out to be un-
traversable and, as a result, the agent is unable to traverse
its computed path. The second is when the environment is
dynamic.

However, we can deal with both of these settings by
augmenting our approach to perform dynamic replanning
while the agent navigates the environment, as follows.

First, the agent extracts the pinch points in the envi-
ronment and computes its solution path to the goal as pre-
viously described.

Next, the agent computes which neighboring cell it
should move to first, based on its neighbors’ costs to each
reachable face and the costs from each reachable face as re-
turned by the solution path. Initially, this is trivial: thestart-
ing cell is part of the adjacency graph so the agent knows
which face to move towards. It only needs to look for the

6

neighbor which will take it to that face with least overall
cost. However, as the robot traverses towards the desired
face, it is able to update the terrain information concerning
encountered cells. As a result, the face that is initially least
costly may not remain so. For example, if the agent finds
that a number of cells along its path to the desired face are
untraversable, it might not be able to reach the face without
a costly diversion. In such a situation it may be less costly
to move towards a different face which was initially more
expensive.

We can allow for this type of online replanning by
interleaving D* and PAO*. First, we use D* to maintain
cheapest cost paths to every reachable face from the agent
cell. Thus, each time the agent updates the terrain of an en-
countered cell, the new terrain cost is propagated through
these paths and the path costs to each face are updated ac-
cordingly. Given these costs (and the costs from each face
returned by PAO*), the agent can update the best overall
face to move towards.

However, PAO* derives its efficiency by ignoring
much of the AND-OR graph and only considering promis-
ing faces. Thus, only the faces along the final solution
graph are guaranteed to have their optimal costs; the rest
may only have admissible costs. This means we need to in-
voke PAO* with the current desired face each time we find
we are moving towards a face which has some nonterminal
leaf node in its solution graph. Thus, we take the path costs
returned by D* and use these to update the arcs between
the robot position and the rest of the adjacency graph. We
can then use PAO* to compute the best reachable face to
move towards. Because PAO* does not terminate until the
solution graph is complete, we are guaranteed that the face
returned by the algorithm will have its optimal cost given
the current adjacency graph information. When the agent
reaches a face, it can update the adjacency graph for all
altered arc costs and replan accordingly.

7 CONCLUSION

We have presented an algorithm for efficient path plan-
ning with imperfect map information. Our approach high-
lights areas of the environment whose uncertainty is most
important to the planning task. It then makes use of the
recently developed PAO* algorithm to incorporate the un-
certainty associated with these areas into the planning pro-
cess. The resulting solution is optimal with respect to
the extracted pinch points and their probabilities of being
traversable, and is computed in a fraction of the time re-
quired by a complete solution. We have also described a
replanning extension to the algorithm to cope with dynamic
environments.

8 ACKNOWLEDGMENTS

The authors would like to thank Omead Amidi and
Ryan Miller for the helicopter-generated outdoor terrain
data. This work was sponsored by the U.S. Army Research
Laboratory, under contract “Robotics Collaborative Tech-
nology Alliance” (contract number DAAD19-01-2-0012).
The views and conclusions contained in this document are
those of the authors and do not represent the official poli-
cies or endorsements of the U.S. Government.

REFERENCES

Chang, C. and Slagle, J.: 1971, An admissible and optimal
algorithm for searching AND-OR graphs.Artificial In-
telligence2, 117

Ferguson, D., Stentz, A., and Thrun, S.: 2004, PAO* for
Planning with Hidden State. inProceedings of the IEEE
International Conference on Robotics and Automation
(ICRA), New Orleans, LA

Kaelbling, L., Littman, M., and Cassandra, A.: 1998, Plan-
ning and acting in partially observable stochastic do-
mains.Artificial Intelligence

Koenig, S. and Likhachev, M.: 2002, Incremental A*.
in Advances in Neural Information Processing Systems,
MIT Press

Nilsson, N.: 1980, Principles of Artificial Intelligence,
Tioga Publishing Company

Nourbakhsh, I. and Genesereth, M.: 1996, Assumptive
Planning and Execution: a Simple, Working Robot Ar-
chitecture.Autonomous Robots Journal3(1), 49

Rich, E. and Knight, K.: 1992, Artificial Intelligence,
McGraw-Hill

Stentz, A.: 1995, The Focussed D* Algorithm for Real-
Time Replanning. inProceedings of the International
Joint Conference on Artificial Intelligence (IJCAI)

7

